

Conditional Random Fields for Land Use/Land Cover Classification and Complex Region Detection

GULCAN CAN, ORHAN FIRAT, FATOS T. YARMAN VURAL

November 09, 2012

14th International Workshop on Structural and Syntactic Pattern Recognition (SSPR 2012) Miyajima-Itsukushima, Hiroshima, JAPAN

Background

• Domain: Remote Sensing

- Terminology:
 - Land use: Man-made areas, e.g. urban areas
 - Land cover: Areas with natural cover, e.g. forest

 Complex object: Areas that exhibit high intraclass variance, i.e. different colors, shapes, sizes and configurations of sub-parts, e.g. airfield

Common Strategy

- Pixel-based vs. segment-based
- Extracting discriminative features
 - NDVI for vegetation
 - NDWI for water
- Using a supervised classifier
 - -k-NN
 - -SVM
- What about contextual/spatial relationships?

Graphical Model Approaches

- Labels and Observations in Spatial Data are NOT independent!
 - spatially adjacent labels are often the same (Markov Random Fields and Conditional Random Fields)
 - spatially adjacent elements that have similar features often receive the same label (Conditional Random Fields)
 - spatially adjacent elements that have different features may not have correlated labels (Conditional Random Fields)

SVM vs. MRF vs. CRF

• Able to model dependencies between:

	SVM	MRF	CRF
the features of an element and its label	\checkmark	\checkmark	\checkmark
the labels of adjacent elements	X	\checkmark	\checkmark
the labels of adjacent elements and their features	X	×	\checkmark

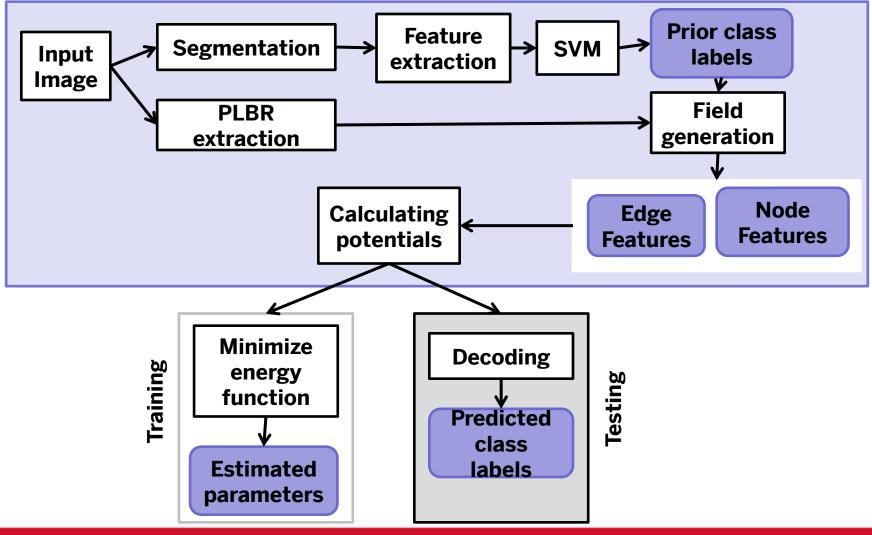
Background:

- Conditional Random Fields
 A CRF
 - A discriminative alternative to the traditionally generative MRFs
 - Discriminative models <u>directly model the posterior</u> <u>probability</u> of hidden variables given observations: P(Y|X)
 - No effort is required to model the prior. $\ensuremath{\textcircled{\odot}}$
 - Improve the factorized form of a MRF by relaxing many of its major simplifying assumptions
 - Allows the tractable modeling of complex dependencies

Proposed Algorithm

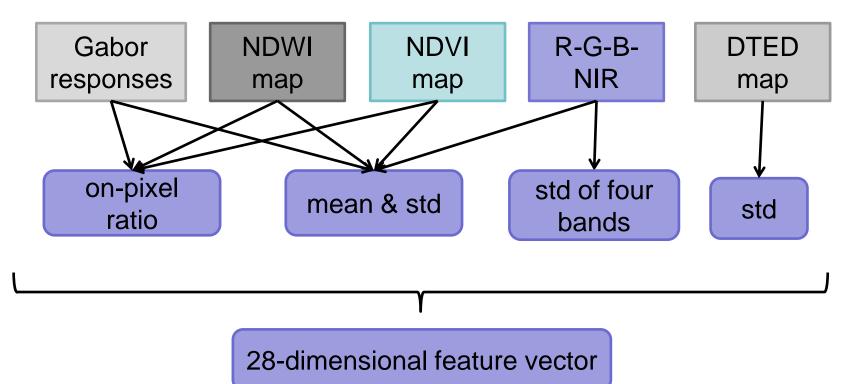
- Contextual relations between *complex object* (airfield) and its surroundings, which is characterized by Land Use/Land Cover classes, are modelled with a CRF
- Aim: identify the *complex object* by recognizing the co-occurrence pattern of all other classes in its surrounding

Flow of Proposed Algorithm



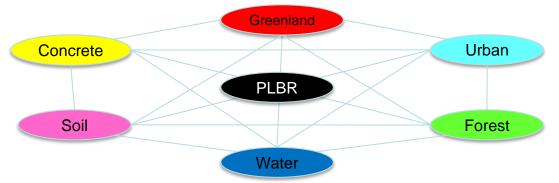
Feature Extraction

• For each segment,

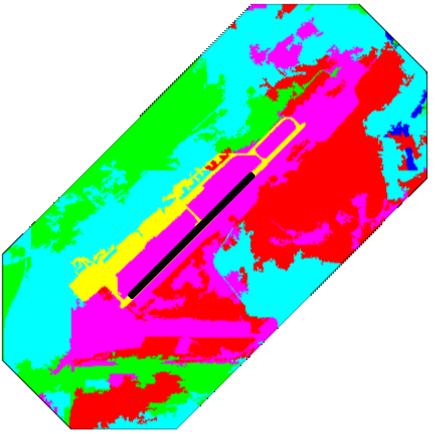


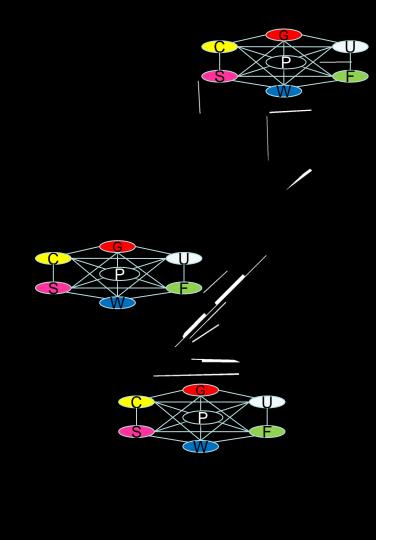
Proposed Model

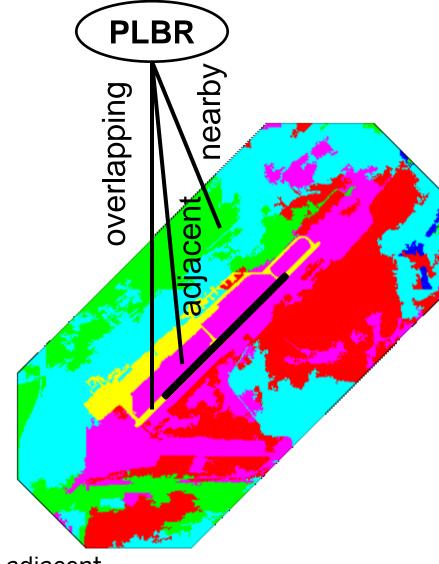
- LULC classification ready to be used
 Obtained by SVM with node features
- Learn spatial relations between LULC classes and complex region
 - Overlapping
 - Neighboring
 - Nearby class freqs
- Model is fixed!
 - i.e. does not change by segment size!



- Total 7+1 classes
- 3 edge features
- 28 node features







For each PLBR, we model overlapping, nearby, adjacent class frequencies as spatial features of PLBR.

Details

- States = 8, nodes = 7, edges = 21 (fully-connected)
- Parameter estimation (parameter sizes btw. 9688-78232)
 - L-BFGS (a quasi-Newton optimization method)
- Loss function
 - Pseudo negative log-likelihood (normalization constant is not computed)
 - Loopy belief propagation
- Decoding
 - Iterated Conditional Modes

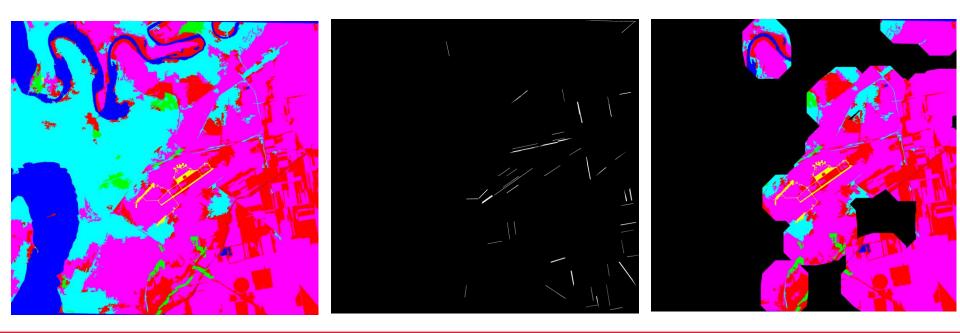
Discussion of the Model

- Advantages
 - Simple
 - Fixed
 - Exact inference possible
 - Less computational burden
 - Does not treat each segment separately

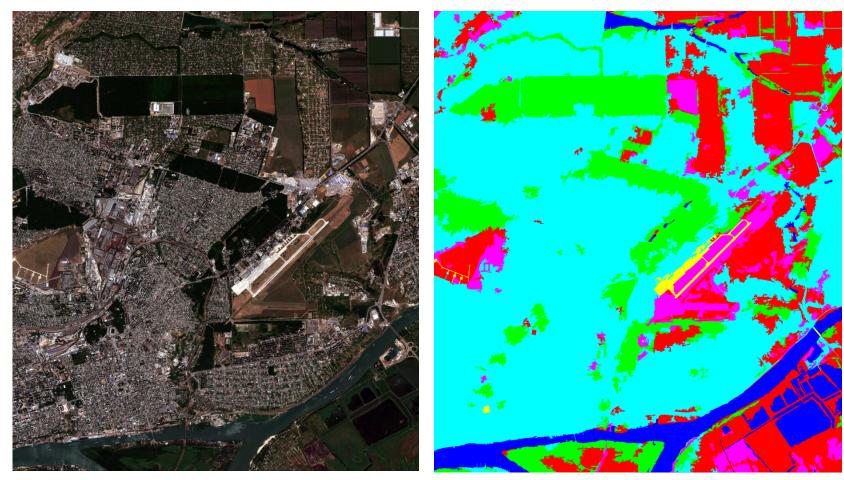
- Drawbacks
 - Cannot update LULC classes (not yet)
 - Treats separate components of a class as same node (maybe an advantage btw [©])
 - Some of which may be labelled wrongly at previous SVM step

Dataset

- 4 GEOEYE images with size of ~3800x3800 pixels
- 2 images for training (121 PLBRs)
- 2 images for testing (77 PLBRs)
- Groundtruth prepared over segmentation



SVM results – Training Image 1



Accuracy = 91.8561% (5132/5587)

Water Urban Forest Greenland Soil Concrete

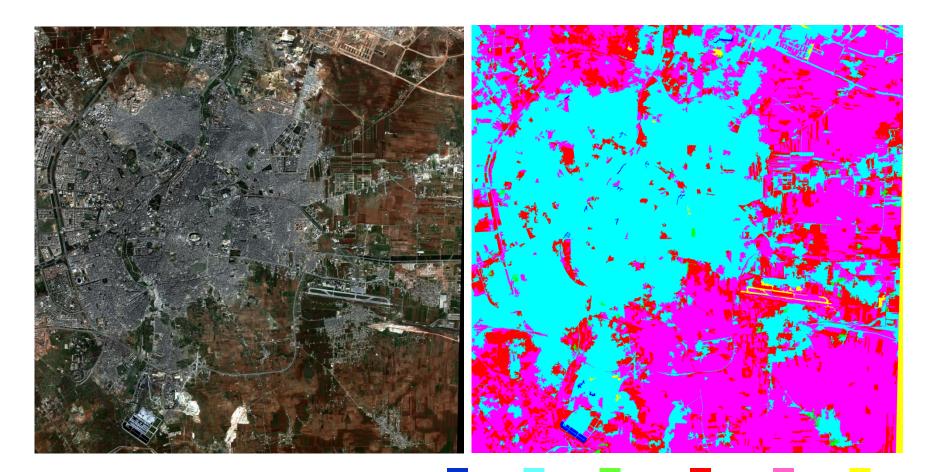
SVM results – Training Image 2



Accuracy = 82.2667% (9937/12079)

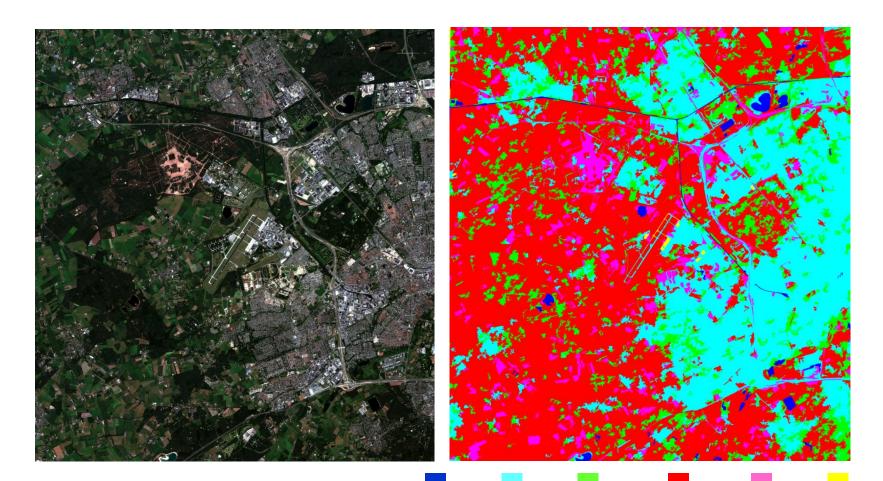
Water Urban Forest Greenland Soil Concrete

SVM results – Testing Image 1



Water Urban Forest Greenland Soil Concrete

SVM results – Testing Image 2



Water Urban Forest Greenland Soil Concrete

Results

• (PLBR on an) Airfield detection rates with the proposed CRF model:

		Edge feature selection						
		Difference of node features		Concatenation of node features		Our spatial class frequency features		
Loss function	Pseudo Negative Log-likelihood	84.61	44.90	100	20.41	92	46.94	
	Loopy Belief Propogation	85.71	48.98	100	20.41	93.33	57.14	
		precision	recall	precision	recall	precision	recall	

Issues

- During training
 - In the absence of a class, label "8" fed to CRF
 - Instead, for all PLBR instances, a CRF model with varying size of nodes
- What if intermediate step is poor?

Future Work

- Exact inference and decoding
- Without the "8"th (mixed) state
 - Forcing CRF to assign a valid class label to all segments
- Star-shaped model instead of a fullyconnected model
 - Better representation
 - Better fit to energy function formalization
- Intermediate step

Questions & Answers

Thanks for listening

